DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – II , INTERNAL ASSESSMENT-1st , 2017-18 Sub: MATHEMATICS, Course - C3

Full Marks: 10

Answer any five questions:

Time: 30 m. $\times 5 - 10$

 $(2 \times 5 = 10)$

- Chose the correct alternative with proper justification The set {x: sinx = 0} has

 finitely many limit points ii) infinitely many limit points iii) no limit points
- 2. Prove that union of two open sets is an open set.
- 3. Let $G \subset R$ be an open set and $F \subset R$ be a closed set. Prove that G F is an open set.
- 4. Prove that $\lim_{n\to\infty} \sqrt[n]{n} = 1$.
- 5. Prove that $\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right) = 1$
- 6. Test the Convergence of the Series $\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{1}{n}$.
- 7. Show that the Series $\sum_{n=1}^{\infty} \frac{n! x^n}{n^n} (x > 0)$ is convergent if x < e.

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – II , INTERNAL ASSESSMENT-2nd , 2017-18 Sub: MATHEMATICS, Course - C3

Full Marks: 10

Answer any five questions:

Time: 30 m. $(2 \times 5 = 10)$

- 1. Prove that every finite subset of \mathbb{R} is a closed set.
- 2. Find out the correct alternative "Every infinite bounded set of real numbers has a limit point".(a) True (b) False (c) Not always true.
- 3. Prove that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}n}{n^2+1}$ is Conditionally Convergent.
- 4. Prove that $\lim_{n \to \infty} \frac{1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n+1}}{2n+1} = 0.$
- 5. Prove that a Convergent Sequence is a Cauchy Sequence.
- 6. Let $\sum x_n$ be a series of Positive real numbers and $y_n = \frac{x_1 + x_2 + \dots + x_n}{n}$. Then Show that $\sum y_n$ is divergent.

7. Find the value of
$$\sum_{n=1}^{\infty} \tan^{-1} \frac{1}{1+n^2+n^2}$$

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – II , INTERNAL ASSESSMENT-1st , 2018-19 Sub: MATHEMATICS, Course – C3

Full Marks: 10

Answer any five questions:

Time: 30 m.

 $(2 \times 5 = 10)$

- 1. Let *G* be an open subset in *R* and *S* be a subset of *R* such that $G \cap S = \emptyset$. Prove that $G \cap S' = \emptyset$.
- 2. Prove that the intersection of a finite number of closed sets in R is a closed set.
- 3. Define closure of a set in *R*. Let *A* be a non empty subset of *R* and $d(x, A) = inf\{|x y|: y \in A\}$. Prove that d(x, A) = 0 if and only if $x \in \overline{A}$. Here *x* is real.
- 4. Prove that if $x_n = (a^n + b^n)^{\frac{1}{n}} \& 0 < b < a$, show that $\lim_{n \to \infty} x_n = a$
- 5. Prove that the sequence $\{u_n\}$ where $u_n = \frac{n!}{n^n}$ is a null sequence.
- 6. Let $\{u_n\}$ be a bounded sequence and $\lim_{n\to\infty} v_n = 0$. Prove that $\lim_{n\to\infty} u_n v_n = 0$.
- 7. Using Cauchy's criterion prove that the series $1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{3} + \cdots + \frac{1}{3}$ diverges.
- 8. Test the convergence of the series $\frac{1+2}{2^3} + \frac{1+2+3}{3^3} + \frac{1+2+3+4}{4^3} + \dots \dots \dots$

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – II , INTERNAL ASSESSMENT-2nd , 2018-19 Sub: MATHEMATICS, Course – C3

Full Marks: 10 Answer any five questions:

Time: 30 m. $(2 \times 5 = 10)$

- 1. Let A and B be subsets of R of which A is closed and B is compact. Prove that $A \cap B$ is also compact subset of R.
 - [Compact Set in R: A set is said to be a compact if every open cover of the set has a finite sub-cover]
- 2. Prove that the set of all circles in the plane having rational radii and centres with rational coordinates is an enumerable set.
- 3. If a boundary point of a set *S* is not a point of *S* prove that it is limit point of the set.
- 4. Show that for any fixed value of x, the series $\sum_{n=1}^{\infty} \frac{\sin (mx)}{n^2}$ is convergent.
- 5. When is a series said to converge conditionally?
- 6. Prove that a bounded sequence $\{u_n\}$ is convergent iff $\overline{lim}u_n = \underline{lim}u_n$.
- 7. Prove that $\lim_{n \to \infty} \frac{(n!)^{\frac{1}{n}}}{n} = \frac{1}{e}$.
- 8. If $\{u_n\}$ be a Cauchy sequence in \mathbb{R} having a subsequence converging to a real number l, Prove that $\lim_{n\to\infty} u_n = l$.